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Abstract 

An interesting research problem in our age of Big Data is that of determining provenance. 
Granular evaluation of provenance of physical goods--e.g. tracking ingredients of a 
pharmaceutical or demonstrating authenticity of luxury goods--has often not been possible with 
today's items that are produced and transported in complex, inter-organizational, often 
internationally-spanning supply chains. Recent adoption of Internet of Things and Blockchain 
technologies give promise at better supply chain provenance. We are particularly interested in 
the blockchain as many favoured use cases of blockchain are for provenance tracking. We are 
also interested in applying ontologies as there has been some work done on knowledge 
provenance, traceability, and food provenance using ontologies. In this paper, we make a case 
for why ontologies can contribute to blockchain design. To support this case, we analyze a 
traceability ontology and translate some of its representations to smart contracts that execute a 
provenance trace and enforce traceability constraints on the Ethereum blockchain platform. 

 

Keywords: blockchain, smart contracts, distributed ledger, Ethereum, provenance, traceability, 
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Towards an Ontology-Driven Blockchain Design for 

Supply Chain Provenance  

Introduction 

An interesting practical and theoretical problem in our age of Big Data is that of determining 

source of information. One community of researchers interested in addressing this problem is the 

ontological engineering community, who are actively researching the development of ontologies 

for knowledge provenance (Fox and Huang 2005)(Erickson et al. 2016).  

According to Merriam-Webster, provenance is “source or origin; or, the history of ownership of 

a valued object or work of art or literature” (Merriam-Webster 2016). The ontological 

engineering community's efforts at formally representing and reasoning about the provenance of 

knowledge on the Web can be considered tractable because data required to ascertain provenance 

is in digital form—as data, meta-data, and timestamps, for example. Moreover, semantic Web 

technologies facilitate the semantic and workflow modelling and inference required for Web 

knowledge provenance. Arguably, provenance evaluation of artifacts that do not have such a 

ready and openly accessible digital footprint or facilitating technologies has not been as tractable 

a problem to address. Tracking the ingredients of a pharmaceutical or demonstrating authenticity 

of a luxury handbag are some examples. Whereas it is true that UPS can accurately track its 

packages, such granular provenance evaluation has often not been possible with today's items 

that are produced and transported in complex, inter-organizational, often internationally-

spanning supply chains. 

As of late, however, new technologies, namely Internet of Things (IoT) and Blockchain 
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technologies, promise to offer provenance even in complex supply chains (Armstrong 2016). 

Internet-aware sensors capture finely granular real-time data about product and environment 

characteristics as well as location and timestamps throughout the supply chain. So lack of a 

digital footprint may no longer be an issue. Furthermore, distributed, shared databases using 

Blockchain technologies promise to offer highly secure and immutable access to supply chain 

data. Blockchain databases are decentralized so that provenance can be evaluated even when no 

one party can claim ownership over all supply chain data. Inasmuch as metadata and semantic 

Web technologies enabled ontologies to be applied for knowledge provenance, it is a key 

premise of our research that IoT and the Blockchain, in particular, now can enable ontologies to 

be used for much improved supply chain provenance. Armed with this premise, this paper details 

our efforts towards developing an ontology-based blockchain for supply chain provenance. 

The paper then is organized as follows. In next section, we expound the Blockchain, which 

constitutes the enabling technology for our work. Excerpts of the TOVE Traceability Ontology 

which serves as the ontology source for our blockchain are presented next. Following this, a 

proof-of-concept implementation of a provenance evaluating blockchain executed on the 

Ethereum application development platform and encoded in the Solidity language is presented.  

Finally, we present concluding remarks and commentary for future work.  

The Blockchain 

A blockchain is “a distributed database that maintains a continuously-growing list of data records 

secured from tampering and revision. It consists of blocks, holding batches of individual 

transactions. Each block contains a timestamp and a link to a previous block” (Morris 2016; 

Nakamoto 2008; Popper 2016). This cryptographic technology “offers a way for people who do 

not know or trust each other to create a record of who owns what that will compel the assent of 

everyone concerned. It is a way of making and preserving truths” (The Economist Staff 2015). 
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Originally developed to underpin the bitcoin cryptocurrency network, the blockchain has many 

enthusiastic supporters who see its potential beyond cash and currency (Boroujerdi and Wolf 

2015). The potential for blockchain to enable a distributed ledger of digital assets is the source of 

their enthusiasm (Tapscott and Tapscott 2016, p. 7): 

Some scholars have argued that the invention of double-entry bookkeeping enabled the rise of 

capitalism and the nation-state. This new digital ledger of economic transactions can be 

programmed to record virtually everything of value and importance to humankind: birth and 

death certificates, marriage licenses, deeds and titles of ownership, educational degrees, 

financial accounts, medical procedures, insurance claims, votes, provenance of food, and 

anything else that can be expressed in code. 

A more circumspect perspective on the potential for blockchain views the following as 

“genuine” blockchain use cases: 1) inter-organizational recordkeeping, 2) lightweight financial 

systems such as crowdfunding, gift cards, and loyalty points, 3) multiparty aggregation to 

address the infrastructure difficulty of combining information from large number of sources, and 

4) provenance tracking (Greenspan 2016). As it is explicated by both this and Tapscotts’ 

perspectives, it seems that provenance tracking along a supply chain could be one of the killer 

apps of blockchain. Already there are startups like provenance.org and skuchain that are 

exploring this possibility. We believe that works from the computational ontology research 

community can be useful for these startups and other researchers interested in this topic. That is, 

specifically, we believe ontologies can contribute to develop blockchain applications for supply 

chain provenance. In fact, in general, we believe that ontologies can contribute to developing 

blockchain applications.  
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Why Use Ontologies for Blockchain Development? 

For the general case, recall this: at its heart, a blockchain is a distributed database. In order to 

understand data in a database distributed across numerous organizations, there must be common 

interpretation of data across these organizations. This interpretation can be informally enforced 

via use of common data standards—i.e. models, dictionaries, and conventions—and via business 

practices and processes that support adoption of data standards by human developers working at 

these organizations. Interpretation can also be formally enforced via formal specifications that 

enable automated inference and verification within software applications that execute on a 

network that spans these organizations.  

Concomitantly, the classic definition of a computational ontology (Gruber 1993) is that it is “an 

explicit specification of a conceptualization.” In ontology-based enterprise modeling, the 

conceptualization is the set of ontologies required to ensure common interpretation of data from 

one or more enterprises’ shared databases. Such ontologies can be informal or light-weight (e.g. 

North American Industry Classification System [NAICS]); formal, like the TOVE Ontologies 

(Fox and Gruninger 1998); or be somewhere in between (i.e. semi-formal). Making the 

reasonable assumption that blockchain modeling is a specialized form of inter-enterprise 

modeling, we make the case that ontology-based blockchain modeling will result in a blockchain 

with enhanced interpretability. That is:  

 A modeling approach based on informal or semi-formal ontologies can lead to 

better data standards, and business practices and processes for developing and 

operating a blockchain. 

 A modeling approach based on formal ontologies can aid in the formal 

specifications for automated inference and verification in the operation of a 

blockchain.    
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It is this latter point that is particularly interesting because that description is very similar to the 

definition of smart contracts as “pieces of software that represent a business arrangement and 

execute themselves automatically under pre-determined circumstances” (The Economist Staff 

2016). Smart Contracts are critical for widespread blockchain adoption. Arguably, the second 

and third largest blockchain endeavours are Ethereum and R3CEV, with the first clearly being 

bitcoin. Ethereum is a worldwide platform for implementing distributed applications. It is run on 

a public, permission-less blockchain upon which smart contracts are executed. Ethers represent 

Ethereum’s crypto-currency paid to participants who maintain the blockchain; there are $1.1B 

USD equivalent of ethers in circulation1. R3CEV is a startup funded for $200M USD2 by a 

consortium of over 40 financial institutions worldwide. Its main focus has been to develop smart 

contracts that access block-chained distributed ledgers of consortium institutions to, for example, 

automatically execute terms of interest rate swaps between two banks (Rizzo 2016). 

Given the importance placed on smart contracts, the following modified statement outlines a 

very compelling rationale for ontology-based blockchains: 

 A modeling approach based on formal ontologies can aid in the formal 

specifications for automated inference and verification in the operation of a 

blockchain. That is, a modeling approach based on formal ontologies can aid in 

the development of smart contracts that execute on the blockchain.    

Now that we have a made a general case for developing ontology-based blockchains, we make 

the specific case: In the next section, we outline the TOVE Traceability Ontology as an apt 

                                                 
 

 

 
1 According to coinmarketcap.com, as of August 22, 2016. In contrast, there are $9.2B USD equivalent bitcoins in 
circulation 
2 https://www.cryptocoinsnews.com/report-blockchain-r3-seeks-200-million-backers/ 
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source for our ontology-based blockchain for supply chain provenance, and present excerpts 

relevant to develop a proof-of-concept. 

Traceability Ontology Based Blockchain for Provenance  

As mentioned, blockchain startups like provenance.org and skuchain are working on supply 

chain provenance. However, there does not appear to be any works other than our own effort at 

taking an ontology-based approach. There have been some related works using ontologies, 

though not blockchain related. Arguably, the most expansive is the  traceability ontology (Kim et 

al. 1995) that served as a key part of TOVE Ontologies for enterprise modelling (Fox and 

Gruninger 1998). This traceability work has garnered interest, interestingly, from food sciences 

researchers (Dabbene et al. 2014)(Regattieri et al. 2007). Food science has co-opted what was an 

ontology biased towards manufacturing industry enterprise modeling to ensure food safety along 

the food supply chain. This bodes well for using the TOVE Traceability Ontology as the primary 

source to design our blockchain. 

TOVE Traceability Ontology Excerpt 

Here are the key informal assumptions used in developing this ontology 

 It must be possible to trace from one entity to another, where neither the entities 

are abstracted entities. 

 Traceable Resource Unit (aka a TRU—a representation for a batch of a 

something, e.g. a tru of 100 widgets) is the resource representation that must be 

traceable, since a tru is neither an abstracted nor aggregated entity. 

 Primitive activity is the activity representation that must be traceable, since a 

primitive activity is neither an abstracted nor aggregated entity. 
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The following is a simplified version of the data model for the ontology (Kim et al. 1995).  

 

Figure 1: Simplified TOVE Traceability Ontology Data Model 

The following are some key axioms of the ontology expressed formally in first-order logic (Kim 

1999): 

 

Figure 2: Key Axioms of the TOVE Traceability Ontology 

Proof-of-Concept Implementation of Ontology Based Blockchain for Supply Chain 

Provenance 

In this section we describe how we interpret the traceability ontology as a real-time tracking 

system, capable of tracing the provenance of TRU’s back to any other TRU’s in their provenance 

history or chain.  
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As suggested by Figure 3, Blockchain technologies are built upon Internet technologies, using a 

Web browser as a natural interface. We used The Truffle framework by ConsenSys3 to generate 

a JavaScript-based (Web3 ABI) interface to interact with the deployed smart contract, forming 

inputs, or predicates, into the system to define the state of objects, as well as performing traces. 

 

Figure 3: A system diagram depicting mediated user interaction with the Blockchain 

application 

The state of the Blockchain or distributed ledger in Ethereum represents the state of all deployed 

programs, or contracts, in terms of inputs, internal variables, and outputs (e.g. logs). All 

Ethereum clients on the network can participate in maintaining the ledger by listening for, 

computing, verifying and encoding transactions into blocks (i.e Mining). Solidity is currently the 

main programming language on the Ethereum platform, and it is purpose-built for writing smart 

contract style programs. Solidity is an Object Oriented (OO) language, in which the Contract is 

the fundamental class for encapsulating programs or smart contracts in Solidity. While the 

                                                 
 

 

 
3 https://consensys.net/ 
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language and platform are representationally Turing Complete—they can be used to represent 

any possible computation—in practice, computations within Contracts are subject to constraints. 

These are in turn due to the economic incentives used to reward the decentralized network of 

individuals who carry out computations on the blockchain in order to determine its next state, or 

block. That is, that all transactions have a cost that has to be paid in Ether, Ethereum’s native 

token-based currency. 

Data Models such as Figure I used in ontology-based enterprise modelling and their subsequent 

implementation in Object Oriented Programming environments have been extensively explored 

in the literature (Evermann and Wand 2005)(Siricharoen 2007). One such methodology 

commonly used as an intermediary representation for translating business processes into the 

language of Object Oriented Software Engineering is UML (Eriksson and Penker 2000). 

Here then is a pertinent diagram. 

 

Figure 4: A Hybrid UML Diagram Depicting the Object Oriented Design of the 

Traceability Data Model, as Implemented in Ethereum-Solidity 
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As implied by Figure 4, the only public interfaces are provided by the Trace class, therefore all 

user input affecting the contract state on the blockchain is through the Trace class. All output 

communication from the Contract is accomplished through the use of Events, which are log data 

variables to the blockchain and in turn read by the Ethereum client. Ensuring that constraints and 

relationships implied by the axioms are applied to the system is analogous to maintaining the so-

called class invariants within the system of objects (Meyer 1988).  

Translating from formal ontology representations to Solidity can be problematic due to Solidity’s 

novelty and correspondingly low maturity. Therefore, as shown in Figure 4, the Trace object or 

class is represented as a Contract, and the PrimitiveActivity and Tru are represented as 

struct types which are essentially classes without associated methods, or functions bound to each 

object instance. PrimitiveActivity and Tru could also be implemented as contracts. However, 

the semantics and implications of doing so would considerably complicate the discussion in this 

paper, without any apparent benefit. As noted in the listings and UML diagram, Trace has 

several functions defined, which encompass the behavior and constraints upon the encapsulated 

types, PrimitiveActivity and Tru. The public functions comprise the public interface for the 

contract. The notion of a Primitive Trace is thereby implemented as a public function or 

method rather than an object or variable, which is a common approach to implementing 

computed fields or variables bound to objects (Meyer 1988). 

The Appendix shows partial listing of the source code for the smart contracts we implemented. 

The full version is available for download here: https://github.com/professormarek/traceability. 

The gist of the code is that we are able to record the scenario pictured in Figure 5 to the 

Ethereum blockchain, and the smart contract implementation of the ontology axioms are used to 

generate the trace shown in Figure 6. 
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Figure 5: Trace Scenario considered for Proof of Concept Demonstration 

 

Figure 6: Screen Output of a Trace Executed on the Ethereum Blockchain 

Concluding Remarks and Future Work 

We identified evaluating provenance as an important and ongoing business issue. Evaluating 

knowledge provenance has become more possible as more and more of the data required to 

discover the source of knowledge is recorded on the Web. Evaluating provenance of physical 

goods—or what we call supply chain provenance—has generally been more difficult because so 
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many goods are handled in complex, international supply chains where granular tracking of 

physical characteristics and product whereabouts has not been possible. That is, until recently, 

when provenance evaluation has become more possible with the advent of IoT and Blockchain. 

In particular, as blockchain technology evolves, as more business models that leverage it are 

conceived, and as more researchers explore still-nascent research opportunities with its use, we 

believe that the ontological engineering community can make a contribution to the growth of 

blockchain.  We posit one specific and two general potential contributions and present 

preliminary results in this paper as a proof-of-concept of these contributions. 

 Specifically, ontologies that represent fundamental concepts in traceability can contribute 

domain knowledge to develop blockchain applications for supply chain provenance. As a 

proof-of-concept, we wrote source code on the Ethereum blockchain and assessed that we 

could in fact program concepts from the TOVE Traceability Ontology in a blockchain 

platform.  

 Generally, a modeling approach based on informal or semi-formal ontologies can lead to 

better data standards, and business practices and processes for developing and operating a 

blockchain. As a proof-of-concept, we analyzed excerpted assumptions and data models 

of the TOVE Traceability Ontology and used them to develop the appropriate distributed 

ledger on the blockchain. 

 Generally, a modeling approach based on formal ontologies can aid in the development 

of smart contracts that execute on the blockchain. As a proof-of-concept, we translated 

TOVE Traceabiliy Ontology axioms that were expressed in first-order logic into smart 

contracts that could execute a provenance trace and enforce traceability constraints on the 

blockchain.    
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There is much more work to be done. Specifically, there are many more traceability constructs—

both informal data models and formal axioms—that ought to be encoded to enhance blockchain 

provenance capabilities. Generally, more research is needed to make the conversion from 

ontology representations to blockchain code more systematic. That may entail more granularly 

outlining conversion steps, developing custom API’s, or contributing to efforts to convert 

semantic Web representations like OWL and RDF into blockchain-compliant representations. 

 Future work notwithstanding, we believe that we have already made some contribution towards 

providing guidance for those wishing to use ontologies to develop blockchain applications, and 

more specifically, for evaluating supply chain provenance.  
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Appendix: Partial Listing of the Trace 
Construct4 
 

1 contract Trace{ 
2     struct Tru{ 
3         bool consumed; 
4         bool used; 
5         bool created; 
6         uint id; 
7         uint producedBy; 
8         uint consumedBy; 
9     } 
10    struct PrimitiveActivity{ 
11        bool created; 
12        string name; 
13        uint id; 
14        uint inputTruId; 
15        uint outputTruId; 
16    } 
17    mapping(uint => Tru) truLookup; 
18    mapping(uint => PrimitiveActivity) 
activityLookup; 
19    uint msgOrder; 
20    function Trace(){ 
21         msgOrder = 0; 
22    } 
23   modifier nonZero(uint num){ 
24         if(num == 0){ 
25             throw; 
26         } 
27         _ 
28     } 
29     modifier truDoesNotExist(uint id){ 
30         if(truLookup[id].created){ 
31             throw; 
32        } 
33        _ 
34    } 
35    modifier truAvailable(uint id){ 
36        if(truLookup[id].consumed || 
truLookup[id].used){ 
37            throw; 
38        } 
39        _ 
40    } 
41    modifier truExists(uint id){ 
42        if(truLookup[id].created != true){ 
43            throw; 
44        } 
45        _ 
46    } 

                                                 
 

 

 
4 The full version is available for download here: 
https://github.com/professormarek/traceability 

47    modifier primitiveActivityExists(uint 
id){ 
48        if(activityLookup[id].created != 
true){ 
49            throw; 
50        } 
51        _ 
52    } 
53    function newTru(uint id) private 
54    truDoesNotExist(id) 
55    nonZero(id) 
56    { 
57        truLookup[id].created = true; 
58        truLookup[id].id = id; 
59        truLookup[id].consumed = false; 
60        truLookup[id].used = false; 
61        truLookup[id].producedBy = 0; 
62        truLookup[id].consumedBy = 0; 
63        TruCreated(msgOrder++, id); 
64    } 
65    function newTru(uint id, uint 
activityId) private 
66    truDoesNotExist(id) 
67    nonZero(id) 
68    primitiveActivityExists(activityId) 
69    { 
70        newTru(id); 
71        truLookup[id].producedBy = 
activityId; 
72    } 
73    function consumeTru(uint truId, uint 
activityId) private 
74    truExists(truId) 
75    truAvailable(truId) 
76    primitiveActivityExists(activityId) 
77    { 
78        truLookup[truId].consumed = true; 
79        truLookup[truId].consumedBy = 
activityId; 
80        TruConsumed(msgOrder++, truId, 

activityId, 
activityLookup[activityId].
name); 

81    } 
 


